数学建模——统计回归模型

前言:看完数学建模的统计回归模型,更是感到了数学建模的“细腻”之处,对比与机器学习,如果说机器学习像是“打一场仗”,那数学建模更是像“做一场手术”,一个简单的回归问题也可以从中感觉到他“细腻”的美感

回归模型是利用统计分析方法建立的最常用的一个模型,下面将通过对软件得到的结果进行分析,进而改进我们的模型。

下面将用3个例子展示对回归模型的优化。

1.牙膏的销售模型

问题的提出:假设一个公司需要预测不同价格和广告费用下的牙膏的销售量,我们需要怎么建立模型呢?

假设我们拿到的数据如下:
这里写图片描述

我们可以根据数据建立一个基本的模型:
y y : 公 司 牙 膏 销 售 量
x1 x 1 : 价 格 差
x2广 x 2 : 公 司 广 告 的 费 用

模型为: y=β0+β1x1+β2x2+β3x22+ϵ y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 2 2 + ϵ

求解这个模型我们会得到下面的结果:
这里写图片描述

这说明y的90.54%可以由模型确定,x2对因变量y 的影响不太显著(因为 β20 β 2 的 置 信 区 间 包 括 0 点 )。

这些数据具体到公司的销售量到底意味着什么呢?

假设我们把控制价格差 x1=0.2 x 1 = 0.2 ,投入广告费 x2=650 x 2 = 650 万,根据我们的模型可以求出y的值为8.2933(百万支),销售量的预测区间为[7.8230,8.7636]。

那么我们就有95%把握知道销售量在7.8320百万支以上。

优化——加入交互项

刚才我们只考虑了每个因素单独的影响,现在我们考虑他们的影响有交互作用,即我们的模型变为:

y=β0+β1x1+β2x2+β3x22+β4x1x2+ϵ y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 2 2 + β 4 x 1 x 2 + ϵ

从而求得的结果为:
这里写图片描述

这是后仍控制价格差x1为0.2,投入广告费用x2位6.5百万,我们得到的销售量为8.3272,可见比原来有所增加,预测区间变为[7.8953,8.7592],预测区间缩短。

下面是模型的比较:
这里写图片描述

那么加入交互项对模型有什么影响呢?

由上图可见加入交互项之后函数的变化更加明显,我们也可以从中得到一些启发,比如下图我们用了不同的价格差,对广告费( x2 x 2 )用和销售量(y)进行比较:
这里写图片描述

由上图我们可以容易的总结出以下两条:

  • 广告费用小于7左右的时候,价格优势的作用更加明显,价格低的销售量多。

  • 当广告费大于6百万的时候,价格差小的,销售良随着广告的增加而增加的速率更快,所以此时应该增加广告来吸引眼球。

2.软件开发人员的薪金

建立模型研究薪金与资历、管理责任、教育程度的关系,从而分析人事策略的合理性,作为新聘用人员薪金的参考

数据为46个开发人员的薪资
这里写图片描述
资历~ 从事专业工作的年数;管理~ 1=管理人员,0=非管理人员;教育~ 1=中学,2=大学,3=更高程度

建立基本模型
y x1  y   薪 金 , x 1   资 历 ( 年 )
x2=1 x2=0  x 2 = 1   管 理 人 员 , x 2 = 0   非 管 理 人 员
x3=1 x3=0  x 3 = 1   中 学 , x 3 = 0   其 它
x4=1 x4=0  x 4 = 1   大 学 , x 4 = 0   其 它
所以:
x3=1,x4=0x3=0,x4=1x3=0,x4=0 中 学 : x 3 = 1 , x 4 = 0 ; 大 学 : x 3 = 0 , x 4 = 1 ; 更 高 : x 3 = 0 , x 4 = 0

回归模型为:
y=a0+a1x1+a2x2+a3x3+a4x4+ϵ y = a 0 + a 1 x 1 + a 2 x 2 + a 3 x 3 + a 4 x 4 + ϵ

得到结果:
这里写图片描述

我们可以从得到结果分析:

  • 资历增加1年薪金增长546
  • 管理人员薪金多6883
  • 中学程度薪金比更高的少2994
  • 大学程度薪金比更高的多148

a4置信区间包含零点,解释不可靠!

优化——残差分析

残差 e=yy^ e = y − y ^

残差与资历x1的关系
这里写图片描述
可见残差的波动较大

管理与教育的组合一共有6种:
这里写图片描述
比较残差和管理——教育组合的关系:
这里写图片描述

残差全为正,或全为负,管理—教育组合处理不当 ,应在模型中增加管理x2与教育x3, x4的交互项

改进的模型

y=a0+a1x1+a2x2+a3x3+a4x4+a5x2x3+a5x2x4+ϵ y = a 0 + a 1 x 1 + a 2 x 2 + a 3 x 3 + a 4 x 4 + a 5 x 2 x 3 + a 5 x 2 x 4 + ϵ

这里写图片描述
去除异常的值

R,F有改进,所有回归系数置信区间都不含零点,模型完全可用

由此可以定制6种管理—教育组合人员的“基础”薪金(资历为0)
这里写图片描述

  • 大学程度管理人员比更高程度管理人员的薪金高
  • 大学程度非管理人员比更高程度非管理人员的薪金略低

总结一下
我们利用了残差分析法发现模型的缺陷,并且由前两个我们也可以发现,引入交互项往往能够改进模型

3.投资额与国民生产总值和物价指数

根据对未来国民生产总值(GNP)及物价指数 (PI)的估计,预测未来投资额

该地区连续20年的统计数据
这里写图片描述

首先建立基本的统计回归模型:
tytx1tGNP,x2t t − 年 份 , y t − 投 资 额 , x 1 t − G N P , x 2 t − 物 价 指 数

模型为: yt=β0+β1x1t+β2x2t+ϵ y t = β 0 + β 1 x 1 t + β 2 x 2 t + ϵ

根据数据得到的结果:
这里写图片描述

此模型不足的地方:

  • 没有考虑时间序列数据的滞后性影响
  • 可能忽视了随机误差存在自相关;如果存在自相关性,用此模型会有不良后果

模型自相关的诊断

定性诊断——残差分析

模型残差: et=yty^t e t = y t − y ^ t
et1 e t − 1 表示上一个数据的残差

画出 etet1 e t − e t − 1 的散点图
这里写图片描述
由图可见,大部分点落在1,3象限,说明有正的自相关

所以直观的判断该模型有正的自相关

定量诊断——D-W检验

我们引入自相关回归系数 ρ ρ ,当ρ=0表示无自相关性, ρ>0 ρ > 0 表示存在正自相关性, ρ<0 ρ < 0 表示存在负自相关性

Q1:如何估计 ρ ρ
A1:D-W统计量

D-W统计量的计算
这里写图片描述

由D-W值的大小确定自相关性:
这里写图片描述

那如何知道dL和dU呢?这是可以查表的。
这里写图片描述

Q2:如何消除自相关性?
A2:广义分差法

这里写图片描述

我们通过上面可以求得DW值和dL以及dU,那我们计算ρ=1DW/2就可以知道是否存在自相关性了

例如我们样本容量n=20,回归变量数目k=3,a=0.05 ,我们可以查到临界值dL=1.10, dU=1.54

ρ=1DW/2=0.5623 ρ = 1 − D W / 2 = 0.5623 ,说明存在正的自相关性。

于是我们就可以得到新的模型:
这里写图片描述

我们可以根据这个模型我们可以再做一次自相关性的检测,发现新的模型已经没有自相关性了。

最后我们就可以根据新的自相关模型进行对下一年数据的预测了。

总结一下

  • 在面对与时间有关的数据的时候,我们常常要检测模型的自相关性,消除了模型的自相关性之后才能建立更加精确的模型。

  • 常常通过D-W方法检测模型的自相关性,用广义差分法消除模型的自相关性。

  • 浓度等后一个量往往受前一个量的影响,在建立模型时往往要考虑前一个值得影响

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 成长之路 设计师:Amelia_0503 返回首页