强化学习
强化学习是机器学习的一个重要分支,是多学科多领域交叉的一个产物,它的本质是解决 decision making 问题,即自动进行决策,并且可以做连续决策。
它主要包含四个元素,agent,环境状态,行动,奖励, 强化学习的目标就是获得最多的累计奖励。
学习资料
介绍Github上一个12.9k的强化学习仓库,其中提供了
两个学习强化资料中的代码和相关练习的答案。
其中代码是Python3编写,使用OpenAI Gym的环境,有些使用TensorFlow做相关神经网络的推荐。
内容
实现的算法
其中还推荐了一些学习资源,包括电子书、课程、教程和论文:
关于作者
此仓库的作者如下:
曾经Google Brain大佬,膜拜膜拜
仓库链接为:https://github.com/dennybritz/reinforcement-learning