土豆洋芋山药蛋的博客

理性的生存,诗意地栖居!
私信 关注
土豆洋芋山药蛋
码龄5年

理性的生存,诗意的栖居。

  • 879,569
    被访问量
  • 232
    原创文章
  • 4,037
    作者排名
  • 16,893
    粉丝数量
  • 于 2015-12-17 加入CSDN
获得成就
  • 博客专家认证
  • 获得1,201次点赞
  • 内容获得482次评论
  • 获得2,874次收藏
  • GitHub 获得106Stars
荣誉勋章
兴趣领域
  • #人工智能
    #TensorFlow#Python#算法#机器学习#深度学习#神经网络
TA的专栏
  • 科研【Research】
    3篇
  • 动手学深度学习【Tensorflow2.0版本】
    9篇
  • 强化学习【RL】
    1篇
  • 编译原理笔记
    10篇
  • 软件分析【SA】
    1篇
  • 数据结构与算法——小白学数据结构
    8篇
  • 计算机网络
    13篇
  • 手把手TensorFlow
    6篇
  • 人工智能【AI】
    11篇
  • 数据结构与算法【DS】
    17篇
  • 机器学习与算法【ML】
    35篇
  • 深度学习【DL】
    5篇
  • Python学习笔记【PY】
    3篇
  • 自然语言处理【NLP】
    16篇
  • TensorFlow【TF】
    6篇
  • C++学习笔记【C++】
    1篇
  • 软件工程【SE】
    5篇
  • 数学建模【MM】
    3篇
  • 论文阅读【Paper】
    10篇
  • 统计学习方法【SL】
    1篇
  • 操作系统【OS】
    3篇
  • 计算机网络【CN】
    15篇
  • 面试经验
    1篇
  • 图像处理
    8篇
  • BUG-Daily
    13篇
  • 密码编码学与网络安全
    7篇
  • PyTorch
    1篇
  • 数学
    5篇
  • Java
    5篇
  • Android学习
    10篇
  • 区块链
    1篇
  • 程序员
    8篇
  • 数据挖掘
    1篇
  • 优化算法【OA】
    8篇
  • 毕业设计
    1篇
  • 编译原理
    11篇
  • LeetCode刷题
    18篇
欢迎关注我的公众号!
欢迎关注我的公众号“慢慢学算法”,日拱一卒,慢慢进步!
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅
  • 小店

常见神经网络结构拓扑图

神经网络的结构呈指数型增长的趋势,下图展示了多部分神经网络经典的拓扑结构。P --> FF : 增加了一层隐藏层,所有节点为全连接FF --> RBF : 使用径向基函数(Radical Basis Function,RBF)作为激活函数,而不是逻辑函数。这使得神经网络可以处理连续的值。FF --> DFF : 使用了多层隐藏层,开启了深度学习的纪元。DFF --> RNN : 在神经网络中传递状态等信息,适用于上下文非常重要的情况。例如当过去的迭代或样本的决策会影响
原创
164阅读
0评论
0点赞
发布博客于 28 天前

【论文阅读 EMNLP-2019】Text Summarization with Pretrained Encoders

Text Summarization with Pretrained EncodersYang Liu and Mirella LapataInstitute for Language, Cognition and Computation School of Informatics, University of Edinburgh yang.liu2@ed.ac.uk, mlap@inf.ed.ac.ukEMNLP 2019link: https://arxiv.org/abs/1908.08345
原创
99阅读
0评论
0点赞
发布博客于 1 月前

【论文阅读-IJCAI-2020】NLocalSAT: Boosting Local Search with Solution Prediction

NLocalSAT: Boosting Local Search with Solution PredictionIJCAI-2020Wenjie Zhang1 , Zeyu Sun1 , Qihao Zhu1 , Ge Li1 , Shaowei Cai2,3 , Yingfei Xiong1 and Lu Zhang1∗1Key Laboratory of High Confidence Software Technologies (Peking University), MoE; Softwar
原创
130阅读
0评论
0点赞
发布博客于 2 月前

【论文阅读 - AAAI 2020】Order Matters:Semantic-Aware Neural Networks for Binary Code Similarity Detection

Order Matters: Semantic-Aware Neural Networks for Binary Code Similarity DetectionAuthors:Zeping Yu,1∗ Rui Cao,1∗ Qiyi Tang,1 Sen Nie,1 Junzhou Huang,2 Shi Wu1† 1Tencent Security Keen Lab, Shanghai, China2Tencent AI Lab, Shenzhen, China{zepingyu, ruich
原创
338阅读
0评论
5点赞
发布博客于 5 月前

做研究与写论文【周志华教授】

本文内容来自于周志华老师在2007年的报告《做研究与写论文》首先讲到研究与研发的区别,其主要区别在于“新”:研究:发现新知识、发明新技术研发:根据已有知识和技术进行研制、开发科学研究可以扩展人类的知识,没有科学研究就没有技术进步如何做研究?研究的基本过成可以分为TPIC,即Topic -> Problem -> Idea -> Concrete work (theoretical analysis, experiments).1、Topic计算机科学发展到今天,已经是一
原创
143阅读
0评论
0点赞
发布博客于 5 月前

ROUGE的理解

ROUGE的理解ROUGE表示Recall-Oriented Understudy for Gisting Evaluation,这是在文本摘要以及机器翻译中重要的评价指标。它通过将自动产生的摘要或翻译与一组参考摘要(通常是人工产生的)进行比较来工作。目前在文本摘要任务中最常用的评价方法是ROUGE(Recall-Oriented Understudy for Gisting Evaluation,来源于2003的paper Automatic Evaluation of Summaries Using
原创
154阅读
0评论
0点赞
发布博客于 5 月前

【论文阅读 - AAAI 2020】TreeGen: A Tree-Based Transformer Architecture for Code Generation

TreeGen: A Tree-Based Transformer Architecture for Code GenerationConference: AAAI 2020Autors:Zeyu Sun,† Qihao Zhu,† Yingfei Xiong,∗† Yican Sun,† Lili Mou,‡ Lu Zhang† †Key Laboratory of High Confidence Software Technologies (Peking University), MoE; Sof
原创
222阅读
1评论
0点赞
发布博客于 6 月前

【Posts阅读】关于 Deep Sets 和 Neural Processes的简单介绍

A Gentle Introduction to Deep Sets and Neural Processes关于 Deep Sets个 Neural Processes的简单介绍Link: https://gordonjo.github.io/post/deepsets_nps/Author:Jonathan GordonMachine Learning PhD StudentMy research interests include probabilistic machine learni
原创
676阅读
0评论
3点赞
发布博客于 6 月前

【论文阅读-ASE 2020】利用单词重叠信息的代码检索 OCoR: An Overlapping-Aware Code Retriever

OCoR: An Overlapping-Aware Code RetrieverConference: ASE 2020Authors:摘要代码搜索任务是通过给出一段自然语言描述,模型能够找到一系列最相关的代码片段,由此来帮助开发人员重用代码。然而现有的方法都无法来专门捕获一个重要的特征:单词重叠(overlaps)。有不同的开发人员写的使用的不同名称可能是相关联的,比如“message”和“msg”它们表达的意思很可能是相同的。而且对于程序语言的变量名称和相应的自然语言描述之间的overl
原创
144阅读
0评论
0点赞
发布博客于 6 月前

【论文阅读 - AAAI 2019】Abstractive Summarization: A Survey of the State of the Art

Abstractive Summarization: A Survey of the State of the ArtConference: AAAI 2019Authors:Hui Lin, Vincent NgHuman Language Technology Research Institute University of Texas at Dallas Richardson, TX 75083–0688 {hui,vince}@.hlt.utdallas.edu论文链接:https://ww
原创
180阅读
0评论
0点赞
发布博客于 6 月前

C程序在内存中的布局与常见的漏洞

1. C程序员通用的漏洞指南C语言中大多数漏洞都与缓冲区溢出和字符串操作相关,在大多数情况下,都会导致段错误(segmentation fault),但仅过精心设计的输入值,但是,根据体系结构和环境特别设计的恶意输入值可能会导致任意代码的执行。下面列出了最常见的错误和建议的修复/解决方案。gets函数gets()函数不会检查缓冲区的长度,常常会成为一个漏洞。有漏洞的代码:#include...
原创
551阅读
0评论
2点赞
发布博客于 10 月前

使用tf.data 加载文件夹下的图片集合并分类

Tensorflow原始教程链接在官网:https://tensorflow.google.cn/tutorials/load_data/images简化版:https://colab.research.google.com/drive/146IoL0nVN7HOA3sUJ08zAGbngmwTArDp?usp=sharing但原始教程中比较繁琐,对于想要直接使用的情况的话,本文将如下要点提炼出来。1、数据假设你有如下形式的数据:每一个类别的名称就是文件夹名称,每个文件夹下面放置该类的图片。
原创
526阅读
0评论
1点赞
发布博客于 10 月前

【转载】linux screen 命令详解

转载:David_Tanglinux screen 命令详解https://www.cnblogs.com/mchina/archive/2013/01/30/2880680.html一、背景系统管理员经常需要SSH 或者telent 远程登录到Linux 服务器,经常运行一些需要很长时间才能完成的任务,比如系统备份、ftp 传输等等。通常情况下我们都是为每一个这样的任务开一个远程终...
转载
196阅读
0评论
0点赞
发布博客于 1 年前

联邦学习(Federated Learning)白皮书

联邦学习白皮书下载地址:https://cn.fedai.orghttps://img.fedai.org.cn/wp-content/uploads/pdf/联邦学习白皮书_v2.0.pdf2020年4月8日,微众银行人工智能部联合电子商务与电子支付国家工程实验室(中国银联)、鹏城实验室、平安科技、腾讯研究院、中国信通院云大所、招商金融科技等多家企业和机构发布了《联邦学习白皮书V 2....
原创
2484阅读
0评论
0点赞
发布博客于 1 年前

联邦学习(Federated Learning)介绍

参考资料:Tensorflow官网教程:https://www.tensorflow.org/federated/联邦学(federated learning)习生态:https://cn.fedai.orgfederated learning/联邦学习:https://daiwk.github.io/posts/dl-federated-learning.htmlFederated ...
原创
2630阅读
0评论
3点赞
发布博客于 1 年前

NLP从Seq2Seq到ALBERT模型理解与实践

今天来推荐一下自己开源的一个小项目,主要包括NLP中一些经典模型的理解与相关实践,从最初的Seq2Seq到目前比较流行的BERT模型,以及BERT模型改进——ALBERT模型等。链接地址:https://github.com/LIANGQINGYUAN/NLP-Notebook下面包含这个仓库的基本学习路线、目录和示例。基本学习路线下面是模型实践的基本学习路线:图片内年分为对应模型的...
原创
450阅读
4评论
3点赞
发布博客于 1 年前

【科研】经典演讲“You and Your Research”

在贝尔通讯研究研讨会系列的一次研讨会上,加利福尼亚蒙特雷海军研究生院教授,贝尔实验室退休科学家Richard W. Hamming博士作了一个非常有趣且令人振奋的演讲,“You and Your Research” 。这次演讲的重点是Hamming对以下问题的观察和研究:“为什么只有少部分的科学家做出了巨大的贡献,而大多数科学家的贡献都在历史中被遗忘了?”。根据他40多年的经验(其中30年在贝尔实...
原创
438阅读
1评论
0点赞
发布博客于 1 年前

【NLP】ALBERT:瘦身版的BERT模型

引言BERT是一种预训练模型,有很多预训练模型,例如skip-gram,cbow可以用在embedding的时候的预训练模型,但参数比较少,我们得在加上很多其他层来训练。ALBERT也是一种预训练模型。在深度学习中,我们知道把网络变深可以增加模型的效果,但将BERT模型的网络变深,hiddne size变大之后将会很大训练,因为参数的量级达到了十几G。所以就引出了ALBERT的核心研究问题:...
原创
459阅读
0评论
0点赞
发布博客于 1 年前

【NLP】李宏毅老师ELMO, BERT, GPT讲解【笔记】

零、引例首先来看一个例子,下面有四句话,每一句话中都有“bank”这个单词:1、Have you paid that money to the bank yet ?2、It is safest to deposit your money in the bank .3、The victim was found lying dead on the river bank .4、They sto...
原创
940阅读
1评论
0点赞
发布博客于 1 年前

【NLP】Transformer机制与实战(Tensoflow2.x)

一、基本框架Transformer模型是Google在2017年的论文《Attention is all you need》中提出的一种模型。Transformer之前的Seq2Seq的模型中,Encoder和Decoder中的基本单元结构是RNN系列(如LSTM,GRU等)的单元。但在Transformer中并没有使用这些单元结构。首先来说一下transformer和LSTM的最大区别, ...
原创
621阅读
0评论
1点赞
发布博客于 1 年前

【NLP】Attention机制与实战(Tensoflow2.x)

Attention是一种用于提升基于RNN(LSTM或GRU)的Encoder + Decoder模型效果的机制(Mechanism),一般称为Attention Mechanism。Attention给模型赋予了区分辨别的能力,例如,在机器翻译、语音识别应用中,为句子中的每个词赋予不同的权重,使神经网络模型的学习变得更加灵活(soft),同时Attention本身可以做为一种对齐关系,解释翻译输...
原创
1033阅读
0评论
3点赞
发布博客于 1 年前

PRML《模式识别与机器学习》的Python3代码实现

项目地址:Python实现:https://github.com/ctgk/PRMLMatlab实现:https://github.com/PRML/PRMLTPRML是一本有关机器学习的入门必备书籍,与“西瓜书”齐名,目前豆瓣评分9.5分:书籍评价引用网友对PRML的评价:“个人认为这是机器学习领域必读的一本书,甚至是目前最好的书。但这本书太过于 Bayesian, 作者对任何...
原创
1024阅读
0评论
4点赞
发布博客于 1 年前

【NLP】Seq2Seq模型与实战(Tensoflow2.x、Keras)

一、从RNN到Seq2Seq根据输出和输入序列不同数量rnn可以有多种不同的结构,不同结构自然就有不同的引用场合。如下图,one to one 结构,仅仅只是简单的给一个输入得到一个输出,此处并未体现序列的特征,例如图像分类场景。one to many 结构,给一个输入得到一系列输出,这种结构可用于生产图片描述的场景。many to one 结构,给一系列输入得到一个输出,这种结构可用...
原创
1201阅读
0评论
4点赞
发布博客于 1 年前

第4章(4.4~4.6节)自定义层与计算【深度学习计算】--动手学深度学习【Tensorflow2.0版本】

项目地址:https://github.com/TrickyGo/Dive-into-DL-TensorFlow2.0UC 伯克利李沐的《动手学深度学习》开源书一经推出便广受好评。很多开发者使用了书的内容,并采用各种各样的深度学习框架将其复现。现在,《动手学深度学习》书又有了一个新的复现代码版本——TensorFlow2.0 版,短时间内成为了github上千star项目,欢迎关注。文章...
原创
299阅读
0评论
0点赞
发布博客于 1 年前

第4章(4.1~4.2节)模型构造与参数【深度学习计算】--动手学深度学习【Tensorflow2.0版本】

项目地址:https://github.com/TrickyGo/Dive-into-DL-TensorFlow2.0UC 伯克利李沐的《动手学深度学习》开源书一经推出便广受好评。很多开发者使用了书的内容,并采用各种各样的深度学习框架将其复现。现在,《动手学深度学习》书又有了一个新的复现代码版本——TensorFlow2.0 版,短时间内成为了github上千star项目,欢迎关注。文章...
原创
358阅读
0评论
0点赞
发布博客于 1 年前

第3章(3.11~3.16节)模型细节/Kaggle实战【深度学习基础】--动手学深度学习【Tensorflow2.0版本】

项目地址:https://github.com/TrickyGo/Dive-into-DL-TensorFlow2.0UC 伯克利李沐的《动手学深度学习》开源书一经推出便广受好评。很多开发者使用了书的内容,并采用各种各样的深度学习框架将其复现。现在,《动手学深度学习》书又有了一个新的复现代码版本——TensorFlow2.0 版,短时间内成为了github上千star项目,欢迎关注。3....
原创
768阅读
0评论
0点赞
发布博客于 1 年前

第3章(3.8~3.10节)多层感知机实现【深度学习基础】--动手学深度学习【Tensorflow2.0版本】

项目地址:https://github.com/TrickyGo/Dive-into-DL-TensorFlow2.0UC 伯克利李沐的《动手学深度学习》开源书一经推出便广受好评。很多开发者使用了书的内容,并采用各种各样的深度学习框架将其复现。现在,《动手学深度学习》书又有了一个新的复现代码版本——TensorFlow2.0 版,短时间内成为了github上千star项目,欢迎关注。文章...
原创
1760阅读
0评论
1点赞
发布博客于 1 年前

第3章(3.2~3.7节)线性/Softmax回归实现【深度学习基础】--动手学深度学习【Tensorflow2.0版本】

项目地址:https://github.com/TrickyGo/Dive-into-DL-TensorFlow2.0UC 伯克利李沐的《动手学深度学习》开源书一经推出便广受好评。很多开发者使用了书的内容,并采用各种各样的深度学习框架将其复现。现在,《动手学深度学习》书又有了一个新的复现代码版本——TensorFlow2.0 版,短时间内成为了github上千star项目,欢迎关注。文章...
原创
479阅读
0评论
2点赞
发布博客于 1 年前

第3章3.1节-线性回归【深度学习基础】--动手学深度学习【Tensorflow2.0版本】

项目地址:https://github.com/TrickyGo/Dive-into-DL-TensorFlow2.0UC 伯克利李沐的《动手学深度学习》开源书一经推出便广受好评。很多开发者使用了书的内容,并采用各种各样的深度学习框架将其复现。现在,《动手学深度学习》书又有了一个新的复现代码版本——TensorFlow2.0 版,短时间内成为了github上千star项目,欢迎关注。...
原创
515阅读
0评论
0点赞
发布博客于 1 年前

动手学深度学习tensorflow 2.0版本,快来康康 第二章,预备知识 已上线!

发布Blink于 2 年前
第2章【预备知识】--动手学深度学习【Tensorflow2.0版本】
发布Blink于 2 年前

第2章【预备知识】--动手学深度学习【Tensorflow2.0版本】

项目地址:https://github.com/TrickyGo/Dive-into-DL-TensorFlow2.0UC 伯克利李沐的《动手学深度学习》开源书一经推出便广受好评。很多开发者使用了书的内容,并采用各种各样的深度学习框架将其复现。现在,《动手学深度学习》书又有了一个新的复现代码版本——TensorFlow2.0 版,短时间内成为了github上千star项目,欢迎关注。...
原创
487阅读
0评论
1点赞
发布博客于 2 年前

欢迎关注专栏,持续更新中… 动手学深度学习tensorflow2.0版本!

发布Blink于 2 年前
第1章【深度学习简介】--动手学深度学习【Tensorflow2.0版本】
发布Blink于 2 年前

第1章【深度学习简介】--动手学深度学习【Tensorflow2.0版本】

项目地址:https://github.com/TrickyGo/Dive-into-DL-TensorFlow2.0UC 伯克利李沐的《动手学深度学习》开源书一经推出便广受好评。很多开发者使用了书的内容,并采用各种各样的深度学习框架将其复现。现在,《动手学深度学习》书又有了一个新的复现代码版本——TensorFlow2.0 版,短时间内成为了github上千star项目,欢迎关注。深度...
原创
719阅读
1评论
1点赞
发布博客于 2 年前

第0章【序】--动手学深度学习【Tensorflow2.0版本】

项目地址:https://github.com/TrickyGo/Dive-into-DL-TensorFlow2.0这个项目将《动手学深度学习》 原书中MXNet代码实现改为TensorFlow2.0实现。经过我同学的导师咨询李沐老师,这个项目的实施已得到李沐老师的同意。原书作者:阿斯顿·张、李沐、扎卡里 C. 立顿、亚历山大 J. 斯莫拉以及其他社区贡献者,GitHub地址:https:/...
原创
503阅读
0评论
2点赞
发布博客于 2 年前
【神器】Noteboke好用的插件推荐
发布Blink于 2 年前

【神器】Noteboke好用的插件推荐

最近给notebook装上了几个插件,使用效果顿时好了很多,不管是写代码,写文档的效率都有了很大的提升,我甚至想马上去卸载了Typora。下面来看看对于一个有写代码和文档需求的程序员而言,都有哪些好用的插件吧。首先看看我安装所有插件后的notebook界面:既可以写公式,又能写代码,还能分级显示和隐藏,真是太方便了,下面介绍每一种插件。0.安装插件集合notebook是一个集开发、文档书...
原创
215阅读
0评论
0点赞
发布博客于 2 年前

SMT Solver-Z3入手教程

Z3是一种SMT Solver,用于在给定背景逻辑的情况下,求解改组理论解释下的公式可满足性。下载安装从下面链接中下载新的Z3版本:https://github.com/Z3Prover/z3/releases安装:1.cd z32.python scripts/mk_make.py3.cd build(切换到build文件夹)4.make看到Z3 was successfull...
原创
2128阅读
0评论
2点赞
发布博客于 2 年前
发布Blink于 2 年前

舔🐶

发布Blink于 2 年前

一波表情包送给快要考试的你

发布Blink于 2 年前

【程序猿必备撩妹表情包04】

发布Blink于 2 年前

黑客与画家,哈哈哈哈

发布Blink于 2 年前

【程序猿必备撩妹表情包03】

发布Blink于 2 年前

【程序媛撩汉必备表情包02】

发布Blink于 2 年前

【程序媛必备撩汉表情包01】

发布Blink于 2 年前

【程序猿必备撩妹表情包02】

发布Blink于 2 年前

【程序猿必备撩妹表情包01】如何用表情包撩女朋友

发布Blink于 2 年前

发布Blink于 2 年前

用命令行写出程序员的每一天

发布Blink于 2 年前

如何用头发来解释逻辑运算

发布Blink于 2 年前
发布Blink于 2 年前

python中nan值判断与处理

查看空值df.head() #查看前5行数据np.isnan(df).sum() #获得nan的数量np.isinf(df).sum() #获得infinity的数量df.isnull().any() #判断哪些”列”存在缺失值df[df.isnull().T.any().T] #找出含有nan的所有行空置处理填充#空值处理方式data.fillna(data.mea...
原创
4358阅读
0评论
3点赞
发布博客于 2 年前

【Kaggle】导致患心脏病的因素分析

这篇文章根据已有的数据对一个人是否患有心脏病进行预测,并分析每个特征对预测结果的影响,以及对于每个病人而言,究竟是哪个特征的异常最终导致了他的患心脏病的概率大大增加了。项目来源于Kaggle:https://www.kaggle.com/tentotheminus9/what-causes-heart-disease-explaining-the-model,感兴趣也可以clone他的kerne...
原创
1426阅读
0评论
3点赞
发布博客于 2 年前

强化学习【RL】推荐

强化学习强化学习是机器学习的一个重要分支,是多学科多领域交叉的一个产物,它的本质是解决 decision making 问题,即自动进行决策,并且可以做连续决策。它主要包含四个元素,agent,环境状态,行动,奖励, 强化学习的目标就是获得最多的累计奖励。学习资料介绍Github上一个12.9k的强化学习仓库,其中提供了Reinforcement Learning: An Intro...
原创
264阅读
0评论
0点赞
发布博客于 2 年前
TensorFlow的名字来源?矩阵与张量的区别?
发布Blink于 2 年前

TensorFlow的名字来源?矩阵与张量的区别?

TensorFlow为啥叫TensorFlow?什么是Tensor?它和矩阵有什么区别和联系?为什么不能叫MatrixFlow?一、什么是Tensor?数学家眼中的Tensor和物理学家眼中的Tensor实在是把我看懵了,接下来就看看没有复杂公式版的,且用于非数学及物理方面的Tensor,或许以后有机会再做一篇Tensor的详细数学定义和解释。Tensor指张量,是对矢量和矩阵向潜在的更...
原创
591阅读
0评论
5点赞
发布博客于 2 年前
CPU和GPU的区别是什么?
发布Blink于 2 年前

CPU和GPU的区别是什么?

CPU是一种微处理器,用于执行程序根据操作(如算术、逻辑、控制和输入-输出)给出的指令。相反,GPU最初设计用于在电脑游戏中渲染图像。CPU强调低延迟,而GPU则强调高吞吐量。CPU Vs GPU 内容比较表格定义区别关键不同结论1. 比较表格从上图中可以看出区别:CPU:注重低延迟,擅长处理穿行的指令;核心少但每个核心功能强大;并且内存消耗大等。GPU:注重高吞吐量;擅...
原创
2172阅读
0评论
2点赞
发布博客于 2 年前

Mac上安装vscode以及可能出现的问题

1.软件下载2.插件安装实现 C/Cpp 代码自动补全,函数跳转。打开VScode后,按下组合键“⇧⌘X”,打开扩展,输入“C/C++”,安装“C/C++”、“C/C++ Clang Command Adapter”,安装完成后,重启VScode让插件生效。3.配置启动环境调试–>创建C++(GDB/LLDB)–>产生launch.json文件并修改如下:{ // ...
原创
2487阅读
0评论
1点赞
发布博客于 2 年前

这个排名让我有点慌

发布Blink于 2 年前

介绍模糊测试(Fuzz Testing,Fuzzing)

介绍模糊测试(Fuzz Testing,Fuzzing)一、什么是模糊测试?模糊测试是一种自动或半自动的测试技术,常被用来发现软件/操作系统/网络的代码中的错误和安全性问题,其中用于输入随机的数据和不合法的数据被称为“FUZZ”。之后,系统将被监视各种异常,如系统崩溃或内置代码失败等。模糊测试最初是由威斯康辛大学的巴顿·米勒于1989年开发的。模糊测试是一种软件测试技术,是安全测试的一种。...
原创
8583阅读
1评论
1点赞
发布博客于 2 年前

动态规划从入门到放弃【2】

动态规划从入门到放弃【2】本文将利用“最大子序列和”问题来对比动态规划和其它算法之间的在实现上的区别。最大子序列和问题给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。示例:输入: [-2,1,-3,4,-1,2,1,-5,4],输出: 6解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。进阶:如果你已经实现复杂度为...
原创
639阅读
0评论
2点赞
发布博客于 2 年前

数学史上的三大危机

数学史上的三大危机在数学的历史上,有过三次比较重大的危机,第一次是关于无理数的,这次危机把毕达哥拉斯的数学王朝推翻,第二次数学危机是关于微积分的,是常识跟数学之间的契合的问题;第三次数学危机发生在二十世纪初,这次危机涉及到了数学中最基础的大厦,差点把整个数学理论推翻重来。一、第一次数学危机:毕达哥拉斯悖论毕达哥拉斯学派在数学上的一项重大贡献是证明了毕达哥拉斯定理,也就是我们所说的勾股定理。勾...
原创
4474阅读
17评论
17点赞
发布博客于 2 年前

动态规划从入门到放弃【1】

动态规划分治法分治法是将问题划分为互不相交的子问题,递归的求解子问题,再将它们的解组合起来,求出原问题的解。动态规划动态规划是应用于子问题重叠的情况,即不同的子问题具有公共的子子问题。最简单的动态规划问题是斐波那契数列问题,它既是递归中的典型例子也是动态规划的典型例子,在斐波那契之后将介绍典型的01背包问题,从而进一步理解动态规划。一、斐波那契数列斐波那契数列的递归求解方法:#递归...
原创
383阅读
0评论
0点赞
发布博客于 2 年前

【最优化导论】全局搜索算法案例

本文使用Matlab实现全局搜索算法案例,包括Melder_Mead单纯形法、模拟退火算法、粒子群算法和遗传算法,从而进一步理解相应的算法。案例1:Melder_Mead单纯形法1.题目要求:2.MATLAB实现:2.1 初始点选择function [ output_args ] = nm_simplex( input_args )%Nelder-Mead simplex metho...
原创
702阅读
0评论
1点赞
发布博客于 2 年前

华山顶上的日出,山顶太冷了

发布Blink于 2 年前

【最优化导论】全局搜索算法

全局搜索算法1. 引言全局意义上的搜索方法能够在整个可行集上开展搜索,以找到极小点。这些方法只需要计算函数目标值,不需要对目标函数进行求导。这类方法的适用面更加广阔,在某些情况下,这些方法产生的解可以作为如梯度方法、牛顿法等迭代方法的“较好”的初始点。2. Melder-Mead 单纯形法在此方法中引入了“单纯形”的概念,单纯形指的是在n维空间中选取n+1个点(p0,p1,⋯&Th...
原创
1338阅读
0评论
3点赞
发布博客于 2 年前

【最优化导论】一维搜索方法案例

案例1——一维搜索方法函数为:f(x)=8e1−x+7log(x)f(x)=8e^{1-x}+7log(x)f(x)=8e1−x+7log(x),log为自然对数。利用MATLAB绘制函数在区间[1,2]上的变化曲线,验证在该区间上是单峰的。利用黄金分割法把区间压缩到长度只有0.23,给出所有中间结果。使用斐波那契法实现,其中ϵ=0.05\epsilon=0.05ϵ=0.05,列出中...
原创
606阅读
0评论
1点赞
发布博客于 2 年前

【最优化导论】一维搜索方法

一维搜索方法本文将介绍一维搜索方法,即寻找一元单值函数的极小点问题。其中包括黄金分割法、斐波那契数列法等,还将介绍在多维搜索算法中一维搜索方法所发挥的作用。一维问题也就是指目标函数为一元单值函数f:R→Rf:\mathbb{R}\rightarrow \mathbb{R}f:R→R的优化问题,一维问题的求解方法统称为一维搜索方法,也称为线性搜索方法。一维搜索方法的重要性体现在以下两个方面:...
原创
775阅读
0评论
6点赞
发布博客于 2 年前

LeetCode-最长回文序列——D15【一般难度】

题目描述Given a string s, find the longest palindromic subsequence’s length in s. You may assume that the maximum length of s is 1000.Example 1:Input:“bbbab”Output:4One possible longest palindromic...
原创
134阅读
0评论
0点赞
发布博客于 2 年前

理解P问题和NP问题

最简单的解释:P:算起来很快的问题NP:算起来不一定快,但对于任何答案我们都可以快速的验证这个答案对不对NP-hard:比所有的NP问题都难的问题NP-complete:满足两点:是NP hard的问题是NP问题最简单的例子:123,456,789,001是不是质数?对于这个问题,计算机科学家可以用现有算法快速得到答案——123,456,789,001不是质数。无论这个数字是否...
原创
332阅读
0评论
3点赞
发布博客于 2 年前

LeetCode-回文的判断——D14【简单】

题目描述Given a string, determine if it is a palindrome, considering only alphanumeric characters and ignoring cases.Note: For the purpose of this problem, we define empty string as valid palindrome.Ex...
原创
150阅读
0评论
0点赞
发布博客于 2 年前

LeetCode-字符串反转——D13【简单】

题目描述编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组 char[] 的形式给出。不要给另外的数组分配额外的空间,你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。你可以假设数组中的所有字符都是 ASCII 码表中的可打印字符。示例 1:输入:[“h”,“e”,“l”,“l”,“o”]输出:[“o”,“l”,“l”,“e”,“h”]示例 2:输入:...
原创
95阅读
0评论
0点赞
发布博客于 2 年前

LeetCode-子串匹配——D12【一般难度】

题目描述实现 strStr() 函数。给定一个 haystack 字符串和一个 needle 字符串,在 haystack 字符串中找出 needle 字符串出现的第一个位置 (从0开始)。如果不存在,则返回 -1。示例 1:输入: haystack = “hello”, needle = “ll”输出: 2示例 2:输入: haystack = “aaaaa”, needle =...
原创
116阅读
0评论
0点赞
发布博客于 2 年前

LeetCode-二叉树层次遍历——D11【一般难度】

题目描述Given a binary tree, return the level order traversal of its nodes’ values. (ie, from left to right, level by level).For example:Given binary tree [3,9,20,null,null,15,7], 3 / \ 9 20...
原创
110阅读
0评论
0点赞
发布博客于 2 年前

【LeetCode小结】二叉树遍历

二叉树作为一个基础的数据结构,遍历算法作为一个基础的算法,两者结合当然是经典的组合了。二叉数的遍历主要有前中后遍历和层次遍历。 前中后属于 DFS,层次遍历属于 BFS。 DFS 和 BFS 都有着自己的应用下面主要讨论各种遍历的迭代实现方式前序遍历这个是遍历是比较简单的,遍历的顺序为根-左-右,可以把这种遍历方式为一个“一人吃饱全家不饿”的人。拿到一个这个人(根节点),他首先想的是我要...
原创
165阅读
1评论
1点赞
发布博客于 2 年前

LeetCode-二叉树后序遍历——D10【困难】

题目描述Given a binary tree, return the postorder traversal of its nodes’ values.For example:Given binary tree {1,#,2,3}, 1 \ 2 / 3return [3,2,1].Note: Recursive solution is trivi...
原创
102阅读
0评论
0点赞
发布博客于 2 年前

LeetCode-二叉树中序遍历——D9【一般难度】

题目描述Given a binary tree, return the inorder traversal of its nodes’ values.Example:Input: [1,null,2,3]12/3Output: [1,3,2]Follow up: Recursive solution is trivial, could you do it iteratively...
原创
90阅读
0评论
1点赞
发布博客于 2 年前

LeetCode-二叉树前序遍历——D8【一般难度】

题目描述Given a binary tree, return the preorder traversal of its nodes’ values.Example:Input: [1,null,2,3]12/3Output: [1,2,3]Follow up: Recursive solution is trivial, could you do it iterativel...
原创
287阅读
0评论
0点赞
发布博客于 2 年前

【PLY】Lex和Yacc简单示例

PLY是流行的编译器构造工具lex和yacc的纯python实现。PLY官方文档:http://www.dabeaz.com/ply/PLY文档翻译:https://qyliang.blog.csdn.net/article/details/97686897PLY由两个单独的模块组成lex.py和 yacc . py 。都可以在名为ply的Python包中找到。lex.py模块用于将输入的...
原创
993阅读
2评论
1点赞
发布博客于 2 年前

LeetCode-3数之和为0——D7【一般难度】

题目描述Given an array nums of n integers, are there elements a, b, c in nums such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.Note:The solution set must not c...
原创
75阅读
0评论
0点赞
发布博客于 2 年前

PLY文档翻译——利用Python进行词法和语法分析

PLY (Python Lex-Yacc)1. Preface and Requirements本文档提供了使用PLY进行词法分析和解析的概述,考虑到解析的内在复杂性,我强烈建议您在使用PLY进行大型开发项目之前阅读(或至少略读)整个文档。2. IntroductionPLY是流行的编译器构造工具lex和yacc的纯python实现。PLY的主要目标是相当忠实于传统lex/yacc工具的工...
翻译
2173阅读
0评论
3点赞
发布博客于 2 年前

LeetCode-最长回文串——D6【一般难度】

题目描述5.longest-palindromic-substringhttps://leetcode.com/problems/longest-palindromic-substring/description/Given a string s, find the longest palindromic substring in s. You may assume that the max...
原创
88阅读
0评论
0点赞
发布博客于 2 年前

LeetCode-最长没有重复元素的子串——D5【一般难度】

题目描述3.longestSubstringWithoutRepeatingCharactershttps://leetcode.com/problems/longest-substring-without-repeating-characters/description/Given a string, find the length of the longest substring wit...
原创
80阅读
0评论
0点赞
发布博客于 2 年前

LeetCode-两数之和——D4【一般难度】

题目描述0002.addTwoNumbershttps://leetcode.com/problems/add-two-numbers/description/You are given two non-empty linked lists representing two non-negative integers.The digits are stored in reverse ord...
原创
72阅读
0评论
0点赞
发布博客于 2 年前

每天刷LeetCode——D3【简单题】

题目描述88.merge-sorted-array.mdhttps://leetcode.com/problems/merge-sorted-array/description/Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.Note:The numbe...
原创
85阅读
0评论
0点赞
发布博客于 2 年前

每天刷LeetCode——D2【简单题】

题目编号:0026.remove-duplicates-from-sorted-array题目描述:Given a sorted array nums, remove the duplicates in-place such that each element appear only once and return the new length.Do not allocate extra ...
原创
133阅读
0评论
0点赞
发布博客于 2 年前

每天刷LeetCode——D1【简单题】

题目编号:0020:validParentheseshttps://leetcode.com/problems/valid-parentheses/description题目描述:Given a string containing just the characters ‘(’, ‘)’, ‘{’, ‘}’, ‘[’ and ‘]’, determine if the input stri...
原创
95阅读
0评论
0点赞
发布博客于 2 年前

[最优化导论]C6 集合约束和无约束优化问题

集合约束和无约束优化问题集合约束和无约束优化的基本形式为:minimizef(x)subject  to  x∈Ω\begin{aligned} minimize f(\mathbf{x}) \\subject\ \ to\ \ \mathbf{x}\in\Omega\end{aligned}minimizef(x)subject &n...
原创
225阅读
0评论
1点赞
发布博客于 2 年前

Latex论文写作软件WinEdt安装与遇到的问题

WinEdt软件下载:http://www.winedt.com/但安装完成之后点击渲染为PDF样式查看的时候,出现了错误:“系统找不到指定文件”解决方案:1.安装MikTeX :https://miktex.org/download2.在菜单栏 Options->Execution Mode->TeX System 中更改TeX root的路径到MikTeX 的安装目录...
原创
316阅读
0评论
1点赞
发布博客于 2 年前

【最优化导论】一、需要准备的基础知识

一、需要准备的基础知识1.1 证明方法和相关记法1、摩根定律:A、B为两个命题,则有命题“非(A且B)”等价于“(非A)或(非B)。”2、原命题与逆反命题同真同假。3、A⇒BA\Rightarrow BA⇒B命题的证明方法包含3种:直接法:一步一步推演,从A得到B。对位证明法:从非B开始,推断多个中间结果,最后以非A作为结论。反证法或归纳法。4、f:X→Yf:X\rightar...
原创
93阅读
0评论
0点赞
发布博客于 2 年前

30个学习大数据挖掘的重要知识点!

1、 数据、信息和知识是广义数据表现的不同形式。2、主要知识模式类型有:广义知识,关联知识,类知识,预测型知识,特异型知识3、web挖掘研究的主要流派有:Web结构挖掘、Web使用挖掘、Web内容挖掘4、一般地说,KDD是一个多步骤的处理过程,一般分为问题定义、数据抽取、数据预处理,数据挖掘以及模式评估等基本阶段5、 数据库中的知识发现处理过程模型有:阶梯处理过程模型,螺旋处理过程模型,以...
转载
515阅读
2评论
5点赞
发布博客于 2 年前

【编译原理】第九章 代码生成

第九章 代码生成9.1 代码生成器的主要任务任务1:指令选择选择适当的目标机指令来实现中间表示(IR)语句三地址语句 x= y+ z目标代码 :LD R0,y /* 把y的值加载到寄存器R0中*/ ADD R0,R0 ,z /* z加到R0上*/ST x ,R0 /* 把R0的值保存到x中*/但如上图所示,目标代码中可能有冗余现象,如a已经保存到R0中,不需要在加载一次。...
原创
208阅读
1评论
0点赞
发布博客于 2 年前

【编译原理】第八章 代码优化

本章基本框架为:第八章 代码优化8.1 流图在代码优化之前,需要先分析代码的控制流程,因此需要流图。流程中每一个基本结点为基本块。基本块(Basic Block)基本块是满足下列条件的最大的连续三地址指令序列:控制流只能从基本块的第一个指令进入该块。也就是说,没有跳转到基本块中间或末尾指令的转移指令。除了基本块的最后一个指令,控制流在离开基本块之前不会跳转或者停机。基本块划...
原创
1060阅读
1评论
1点赞
发布博客于 2 年前

【编译原理】 第七章 运行存储分配

第七章 运行存储分配7.1 概述编译器在工作过程中,必须为源程序中出现的一些数据对象分配**运行时的存储空间 **,对于那些在编译时刻就可以确定大小的数据对象,可以在编译时刻就为它们分配存储空间,这样的分配策略称为静态存储分配如果不能在编译时完全确定数据对象的大小,就要采用动态存储分配的策略。即在编译时仅产生各种必要的信息,而在运行时刻,再动态地分配数据对象的存储空间。栈式存储分配...
原创
324阅读
0评论
1点赞
发布博客于 2 年前

【编译原理】第六章 中间代码生成

第六章 中间代码生成中间代码也叫中间语言(Intermediate code /language)是:源程序的一种内部表示,不依赖目标机的结构,复杂性介于源语言和机器语言之间。中间代码常见的几种形式1、后缀式2、图表示法抽象语法树、DAG图3、三地址代码三元式、四元式、间接三元式后缀式6.1 声明语句的翻译6.1.1 类型表达式各类语句的翻译,包括声明语句、控制语句等。声明语...
原创
402阅读
0评论
0点赞
发布博客于 2 年前

优化算法简介

凡事追求尽善尽美是人的天性,因而在解决实际问题的时候往往需要寻求最优的方案,尤其是在工程领域,优化更是基石,所以优化技术在工程领域有这大量的应用。最优化问题最优化问题可以分为无约束最优化问题和约束最优化问题两大类。无约束最优化问题是求一个函数的极值问题,即min f(x)min \ f(x)min f(x),其中x∈Rnx\in R^nx∈Rn称为决策变量,f(x)∈Rf...
原创
93阅读
0评论
0点赞
发布博客于 2 年前

【编译原理】第五章 语法制导翻译

第五章 语法制导翻译5.1 语法制导翻译概述将语义分析和中间代码生成统称为语义翻译,而语义翻译和语法分析统称为语法制导翻译语法制导翻译使用CFG来引导对语言的翻译, 是一种面向文法的翻译技术。语法制导翻译的基本思想包括1)如何表示语义信息?2)如何计算语义属性?Q1:如何表示语义信息?为CFG中的文法符号设置语义属性,用来表示语法成分对应的语义信息比如说一个变量,它的属性包括变量...
原创
1727阅读
0评论
5点赞
发布博客于 2 年前